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Comment on path integral derivation of Schrodinger
equation in spaces with curvature and torsion
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Germany

Received 7 May 1996

Abstract. We present a derivation of the Sékiinger equation for a path integral of a point
particle in a space with curvature and torsion which is considerably shorter and more elegant
than that commonly found in the literature.

1. Introduction

When studying the historic paper on path integrals in spaces with curvature and torsion by
DeWitt [1], or any of its successors [2—4] one may rightfully be frustrated by the tedious
algebra involved in deriving the simple Séldinger equation satisfied by a point particle in
curved space. If torsion were to be admitted to the geometry, this derivation would become
even more involved.

In this paper, we want to point out that there exists a much shorter and more elegant
derivation based on the use of non-holonomic coordinate transformations (mathematicians
would speak of non-holonomic bases for the tangent space). By analogy with the physics
of defects, these have recently been found to be an essential tprddictingthe correct
path integral in such spaces [5-7]. In particular, they do not produce undesirable terms
proportional to the scalar curvaturein the Schédinger equation, in contrast to the findings
in previous works [1-4]. The use of such transformations is very fundamental, and the
transformation rules constitute a neyuantum equivalence principl®, 6] which extends
Einstein’s famous classical principle to spaces with curvature and torsion, specifying the
dynamical laws of both classical [8] and quantum physics [7].

Here we do not intend to convince the reader of the virtues of this principle but want
to direct his/her attention upon a useful technical advantage of using such transformations:
a drastic simplification of the above-mentioned derivation of the @ithger equation.

2. Schrodinger equations from path integral

Let us first recall the simple derivation of the Sgtlinger equations from path integral
of a free non-relativistic particle of mas| in Euclidean space. The set of fluctuating
paths inD dimensions is parametrized by the time-dependent Cartesian coordinates
(i=1,..., D). The time axis is sliced int&/ + 1 intervals(z,,, t,_1) m =1,..., N+1) of

1 Permanent address: Department of Theoretical Physics, Faculty of Physics, University of Sofia, Bull. 5 James
Boucher, Sofia 1126, Bulgaria.
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width Ar and the positions’(z,) are denoted by/. If Ax! are the differences; — x’ ,,
the time-sliced path integral has the measure

vew . N+L d?(Ax,) i X3 (Ax)?
fd“x ':Nlmo[g (ZTiFAt/M)D/z}eXpI:EZM 2A1 ] @

n=1

Separating the last integral overxy ., from the others, the amplitudg, (x) at the timer
is seen to satisfy the recursion relation

d?(Ax) ox
rifiar P2 P T oA
Expandingy,_a,(x — Ax) in powers ofAx and using the Gaussian integral formula

Vi (x) = (Axi)z} Viear(x — Ax). &)

d’A a . , o e 2
/7exp — — [ A'A! (1+b,Al+bUA1A1+):1+7b,,+0(8) (3)
(2re/a)P a

2¢
one finds
d?(Ax) .M in2 ;
Vi (x) = @rihiAt/M)DP2 exp[l 2EAt(Ax ) j||:tht(x) — (AX)' Vi —nr(x)

+%<Ax>"(Ax)f Vi Vi (x) + O«At)f‘/z)}

=¥ (x) + Ar[ — 3 (x) + 2'1’"4V2w,(x>] + O((A1?). 4)

In the limit Ar — 0, this yields the Scladinger equation
EZ
ih =———A 5
ihd, ¥ o 2V ®)

whereA = V? is the Laplace operator.

In non-Euclidean spaces, the derivation becomes complicated. For the sake of generality,
we shall admit some kind of curvature and torsion. gétr) (u = 1, ... D) be the paths
in such a general spacg. A non-holonomic transformation

i = e, (9)g" (6)

maps them into a reference spageof x-vectors(i = 1, ..., D) with a Euclidean metric.
Under this transformation, the measure of path integration (1) goes over into [7]

o d?(Ag,)  3(Ax,) N ZE
/ d/qu = IJE)noo |: )EIZ (27'[ iFAt/m)D/Z a(AQH)] exp<l/_lAAq ) (7)

whereAAﬁ,\“rl is the time-sliced version of the classical action

173 m
A, =/ dr5 8 (@)4" 4" (8)
n

of the system, evaluated along the classical orbits. The tefsgy) = ), eL(q)ei(q)

is the metric with a non-zero Riemann curvature terﬁgr,\" derived from the covariant

curl of the usual Christoffel symbols (Levi-Civita connection). The actkmg’“ can be
expanded around prepoint, midpoint or postpoint in each time slice, with the latter being
the most convenient one for the derivation of the ®dimger equation [5, 7]. It will be
denoted byA AY+L,
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By a straightforward but tedious generalization of the above Euclidean derivation one
finds in the space, the Schodinger equation [1-5, 7]
_ h?
iho = —ﬂm/f 9)

where A = D*D, is the Laplace operator in a general metric-affine space. This
operator is related to the Laplace—Beltrami operatoe= D" D, = V& 18,./gg""d, by
D*D, = A — 25§"9,. The symbolD, denotes the covariant derivative with respect to the
affine connectiorl",,,” = ¢;”d,¢! with non-zero torsionS,,” = I'[,.,", and zero Cartan
curvatureRr,,,* =0, whereasD, is the covariant derivative with respect to the Christoffel
symbolsT,,* = g“* (3,8u: + 9u8u5 — 3:.8,v) /2 With non-zero Riemann curvatude,,;*,

and zero torsiors,,,” = I'[,,” = 0.

What makes the historic derivation [1-4] of the Sininger equation (9) tedious is the
fact, observed first in [9], that one has to calculate the time-sliced actidff** up to
fourth-order terms in the differencesg, = g, — ¢ ;, and the Jacobiafi(Ax,)/d(Ag,)
up to the second order. Sineg;! are of the order/Ar, all these terms contribute to first
order in At, and thus to the Sctdinger equation. Instead of (3), the derivation requires
the more general formula

d®A " Ay
W\/E(l—l—bMA + b AFAY -
x exp[ — Zi(g,wMA“ + G AP AV A + G APAY AP A - -)]
£

& 1 1
=1+ 5 |:b;wglw - E(G/wkk + G;mbx)gw'\'{ + 8GaﬁyGuv}LgaﬁyMMi| +O(82).
(10)

Here b,, b,,, and g,., G, Gu, - .- are e-independent coefficientsg denotes the
determinant of the metric d¢g,.||, and g#v#2> are symmetric tensors formed from
products ofn metric tensors;ghV* = ghvgh 4 ghhgVc 4 gk gvh  g@Brivh — gaf gyuvi o

g%’ gP ... In the course of the calculations one encounters many cancellations, which
make the final result (9) again very simple. There must be a derivation which reflects the
simplicity of the final result from the beginning, and this is what we want to present now.

3. New derivation

First we observe that the time-sliced acti<zznAg“rl which consists of thezlivjzl AA,
calculated along the classical trajectories is a simple Gaussian when expressed in terms of
the velocitiesj#* in each time slice. The classical trajectories are described by the equation
of motion

§" +Tulq"¢* =0. (11)

This equation implies the conservation of the enefyy g,.,¢"¢"/2. As a consequence,
the short-time action is
m m
AAZ* V.H'vAl‘zi
2 8wd 4 AL
where we have found it useful to introduce thector quantitiesA&#* defined byA&H =
¢" At whose size is of the order @iA7)Y/?, to have quantities comparable to the previous

differencesAx’. In (12), the velocities;* as well as the metrig,,, are calculated at the

guvAEHAE” (12)
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latest timer, in the interval(z,, ¢,_1), to have the preferred post-point form (any time would
give the same result, due to energy conservation).

An explicit functionalrelation betweem\&* and Ag* is obtained by Taylor-expanding
Aqﬂ = qﬂ(tn) - qu(tn—l) = qu(tn) - qﬂ(tn — At)
AD? At .
( 2,) i+ 3,) q" +0(an? (13)

and using (11), which implies for the higher time derivatives

— q'l‘vAt _

T W G = =@ — 2Ty T3¢  ¢*

where curly braces around indices indicate their symmetrization. Hence,

Ag" = AE" + %mmmﬁ - %(BKFM — 2l (s T’ ) AE NGV AEH + - - (14)
and this may be inverted to

AEF = AgH — %rM“Aq”Aq* + %(akrvw + Tesy" T AG AG" Agh + - - (15)

Using this equation, we change the integration variallg$ in formula (7) into A&/, and
find the following measure for the path integral

: dP Ag, i AR e
/dMq = lJinoo |:1:[ W\/ g(Cln)] EXp[m ; v (gn) AE) Aéni|- (16)

This expression is related to the flat-space measure (1) by just a linear transformation. The
reason for this is that in terms of the nonholonorieariables, the equation of motion (11)
is trivial: ¥’ = 0. Hencex’ = constant, and

Ax' =x'At = e " At = ¢} AE" (17)

so thatd(Ax)/d(AE) = det|lel || = /s.
Using the simple measure (16), we immediately find for an amplitiyde) the recursion
relation (again by removing the last slice from the product of integrals)

= dDAS e M AEFAEY Ag(A 18
Iﬁt(Q)—/W/M)D/Zx/E Xp<—mguv & 5)%—Az(q— q(Ag)). (18)

Expanding the amplitude inside the integral in powersAgf*, and expressing these in
terms of A&* with the help of (14), we find

d”Ag M )
(ZniﬁAz/M)D/Z\/EeXp< ~ oA S AETAE ) |:th1‘ (@)

1
—(As“ - ZFMMAs”Asﬂauw,_m(q)

Yi(q) =

+% AE"AED,0,:(q) + 0<(At)3/2>}

in
=Y (q) + At{ — Y (gq) + Iﬂ[glwauath(Q) - FKK#auwt(‘])]}‘i‘O((At)z)o
(19)

After making use of the identitg*'d,9, — I'.**d, = D"D,, this is precisely the
Schiddinger equation (9).
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4. Comparison with the historic derivation of the Schrddinger equation in spaces
with curvature and torsion

To compare the present derivation with the historic derivation in [1-5, 7], we must calculate
AA as a function ofAg* up to fourth-order terms using formulae (12) and (15). This
yields

m -
AA = A7 [gMUAq“Aq” — FW,\AC]“Aq”AqA

1 - 1- -
+3<ap.ru)w - FlLVUF)»KU>AqMAqVAq)\AqK

4
1 o n v A K 5
+35%w S Mg Aq" Ag” Aq + O((Ag)) | (20)
The Jacobiard(Ax)/3(Aq) is conveniently given in the exponential form
d(Ax)/d(Aq) = JgexpliAA,/R) (21)
with an effective action
i / v 1 1 K K A v
FAA; =Ty Ag" + 51 0Ty + 5 (Clunt* T = T To) |Ag” Ag
+O0((AQ)). (22)

Inserting these expansions into the product of integrals (7) we obtain a large number of
terms. Upon applying formula (10), most of these cancel each other, leading again to the
Schiddinger equation (9).

The additional labour is the same as if we were to prove the obvious identity

[0(Ax)/0(Aq)][0(Aq)/d(AE)] = d(Ax)/I(AE) = /g (23)

by writing [0(Ax)/9(Ag)] as in (21) expanded via (22), and writiffAg)/9(A§) =
exp(iA A’ /h) with

i " v 1 K K v
EAA‘] =T/ A8 — é(a{p_rkv}u — 20 ) Ty 4 Tiuny T ) AE* AE” + O(AE>)(24)

which follows from (14). Inserting here (15) one may re-express the right-hand side as a
power series img, and form the suna A’ + AA’. The many terms in this sum all cancel
each other, as required by (23).

All such complications are avoided by working with the variables” in which the
exponential in (19) is a pure Gaussian.
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Note added in proofAfter this paper was accepted, Profas3®s Dowker drew our attention to an early work of
his in 1974J. Phys. A: Math. Gen7 1256, in which he simplifies the derivation of the Safinger equation in
a way similar to ours. His mapping, however, is different and produces undesRablens as in previous works
[1-4].
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