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Comment on path integral derivation of Schrödinger
equation in spaces with curvature and torsion

P Fiziev† and H Kleinert
Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, D-14195, Berlin,
Germany

Received 7 May 1996

Abstract. We present a derivation of the Schrödinger equation for a path integral of a point
particle in a space with curvature and torsion which is considerably shorter and more elegant
than that commonly found in the literature.

1. Introduction

When studying the historic paper on path integrals in spaces with curvature and torsion by
DeWitt [1], or any of its successors [2–4] one may rightfully be frustrated by the tedious
algebra involved in deriving the simple Schrödinger equation satisfied by a point particle in
curved space. If torsion were to be admitted to the geometry, this derivation would become
even more involved.

In this paper, we want to point out that there exists a much shorter and more elegant
derivation based on the use of non-holonomic coordinate transformations (mathematicians
would speak of non-holonomic bases for the tangent space). By analogy with the physics
of defects, these have recently been found to be an essential tool inpredicting the correct
path integral in such spaces [5–7]. In particular, they do not produce undesirable terms
proportional to the scalar curvatureR in the Schr̈odinger equation, in contrast to the findings
in previous works [1–4]. The use of such transformations is very fundamental, and the
transformation rules constitute a newquantum equivalence principle[5, 6] which extends
Einstein’s famous classical principle to spaces with curvature and torsion, specifying the
dynamical laws of both classical [8] and quantum physics [7].

Here we do not intend to convince the reader of the virtues of this principle but want
to direct his/her attention upon a useful technical advantage of using such transformations:
a drastic simplification of the above-mentioned derivation of the Schrödinger equation.

2. Schr̈odinger equations from path integral

Let us first recall the simple derivation of the Schrödinger equations from path integral
of a free non-relativistic particle of massM in Euclidean space. The set of fluctuating
paths inD dimensions is parametrized by the time-dependent Cartesian coordinatesxi(t)

(i = 1, . . . , D). The time axis is sliced intoN+1 intervals(tn, tn−1) (n = 1, . . . , N+1) of
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width 1t and the positionsxi(tn) are denoted byxin. If 1xin are the differencesxin − xin−1,
the time-sliced path integral has the measure∫

dµnew
x := lim

N→∞

[ N+1∏
n=2

∫
dD(1xn)

(2π ih̄1t/M)D/2

]
exp

[
i

h̄

N+1∑
n=1

M
(1xin)

2

21t

]
. (1)

Separating the last integral over1xN+1 from the others, the amplitudeψt(x) at the timet
is seen to satisfy the recursion relation

ψt(x) =
∫

dD(1x)

(2π ih̄1t/M)D/2
exp

[
− M

2ih̄1t
(1xi)2

]
ψt−1t (x −1x). (2)

Expandingψt−1t (x −1x) in powers of1x and using the Gaussian integral formula∫
dD1

(2πε/a)D
exp

[
− a

2ε

(
1i1i

)]
(1 + bi1

i + bij1
i1j + . . .) = 1 + ε

a
bii + O(ε2) (3)

one finds

ψt(x) =
∫

dD(1x)

(2π ih̄1t/M)D/2
exp

[
i
M

2h̄1t
(1xi)2

][
ψt−1t (x)− (1x)i∇iψt−1t (x)

+1

2
(1x)i(1x)j∇i∇jψt (x)+ O((1t)3/2)

]
= ψt(x)+1t

[
− ∂tψt (x)+ ih̄

2M
∇2ψt(x)

]
+ O((1t)2). (4)

In the limit 1t → 0, this yields the Schrödinger equation

ih̄∂tψ = − h̄2

2M
1ψ (5)

where1 ≡ ∇2 is the Laplace operator.
In non-Euclidean spaces, the derivation becomes complicated. For the sake of generality,

we shall admit some kind of curvature and torsion. Letqµ(t) (µ = 1, . . . D) be the paths
in such a general spaceSq . A non-holonomic transformation

ẋi = eiµ(q)q̇
µ (6)

maps them into a reference spaceSx of xi-vectors(i = 1, . . . , D) with a Euclidean metric.
Under this transformation, the measure of path integration (1) goes over into [7]∫

dµq = lim
N→∞

[ N+1∏
n=2

∫
dD(1qn)

(2π ih̄1t/m)D/2
∂(1xn)

∂(1qn)

]
exp

(
i

h̄
1AN+1

q

)
(7)

where1AN+1
q is the time-sliced version of the classical action

Aq =
∫ t2

t1

dt
m

2
gµν(q)q̇

µq̇ν (8)

of the system, evaluated along the classical orbits. The tensorgµν(q) = ∑
i e
i
µ(q)e

i
ν(q)

is the metric with a non-zero Riemann curvature tensorR̄µνλ
κ derived from the covariant

curl of the usual Christoffel symbols (Levi-Civita connection). The action1AN+1
q can be

expanded around prepoint, midpoint or postpoint in each time slice, with the latter being
the most convenient one for the derivation of the Schrödinger equation [5, 7]. It will be
denoted by1AN+1

> .
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By a straightforward but tedious generalization of the above Euclidean derivation one
finds in the spaceSq the Schr̈odinger equation [1–5, 7]

ih̄∂tψ = − h̄2

2m
1ψ (9)

where 1 ≡ DµDµ is the Laplace operator in a general metric-affine space. This
operator is related to the Laplace–Beltrami operator1̄ ≡ D̄µD̄µ ≡ √

g
−1
∂µ

√
ggµν∂ν by

DµDµ = 1̄− 2Sµ∂µ. The symbolDµ denotes the covariant derivative with respect to the
affine connection0µνγ = ei

γ ∂µe
i
ν with non-zero torsionSµνγ = 0[µν]

γ , and zero Cartan
curvatureRµνλκ = 0, whereasD̄α is the covariant derivative with respect to the Christoffel
symbols0̄µνκ = gκλ

(
∂µgνλ + ∂νgµλ − ∂λgµν

)
/2 with non-zero Riemann curvaturēRµνλκ ,

and zero torsion̄Sµνγ = 0̄[µν]
γ = 0.

What makes the historic derivation [1–4] of the Schrödinger equation (9) tedious is the
fact, observed first in [9], that one has to calculate the time-sliced action1AN+1

> up to
fourth-order terms in the differences1qµn = q

µ
n − q

µ

n−1, and the Jacobian∂(1xn)/∂(1qn)
up to the second order. Since1qµn are of the order

√
1t , all these terms contribute to first

order in1t , and thus to the Schrödinger equation. Instead of (3), the derivation requires
the more general formula∫

dD1

(2πε/a)D
√
g(1 + bµ1

µ + bµν1
µ1ν + · · ·)

× exp

[
− a

2ε
(gµν1

µ1ν +Gµνλ1
µ1ν1λ +Gµνλκ1

µ1ν1λ1κ + · · ·)
]

= 1 + ε

a

[
bµνg

µν − 1

2
(Gµνλκ +Gµνλbκ)g

µνλκ + 1

8
GαβγGµνλg

αβγµνλ

]
+O(ε2).

(10)

Here bµ, bµν , and gµν,Gµνλ,Gµνλκ, . . . are ε-independent coefficients,g denotes the
determinant of the metric det‖gµν‖, and gµ1,...,µ2n are symmetric tensors formed from
products ofn metric tensors:gµνλκ = gµνgλκ + gµλgνκ + gµκgνλ, gαβγµνλ = gαβgγµνλ +
gαγ gβµνλ+· · · . In the course of the calculations one encounters many cancellations, which
make the final result (9) again very simple. There must be a derivation which reflects the
simplicity of the final result from the beginning, and this is what we want to present now.

3. New derivation

First we observe that the time-sliced action1AN+1
q which consists of the

∑N+1
n=2 1An

calculated along the classical trajectories is a simple Gaussian when expressed in terms of
the velocitiesq̇µ in each time slice. The classical trajectories are described by the equation
of motion

q̈µ + 0νλ
µq̇ν q̇λ = 0. (11)

This equation implies the conservation of the energyE = gµνq̇
µq̇ν/2. As a consequence,

the short-time action is

1A = m

2
gµνq̇

µq̇ν1t = m

21t
gµν1ξ

µ1ξν (12)

where we have found it useful to introduce thevector quantities1ξµ defined by1ξµ ≡
q̇µ1t whose size is of the order of(1t)1/2, to have quantities comparable to the previous
differences1xi . In (12), the velocitieṡqµ as well as the metricgµν are calculated at the
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latest timetn in the interval(tn, tn−1), to have the preferred post-point form (any time would
give the same result, due to energy conservation).

An explicit functionalrelation between1ξµ and1qµ is obtained by Taylor-expanding

1qµ = qµ(tn)− qµ(tn−1) = qµ(tn)− qµ(tn −1t)

= q̇µ1t − (1t)2

2!
q̈µ + (1t)3

3!
˙̈qµ + O((1t)4) (13)

and using (11), which implies for the higher time derivatives

q̈µ = −0νλµq̇ν q̇λ ˙̈qµ = −(∂κ0νλµ − 20{κδ}µ0νλδ)q̇κ q̇ν q̇λ

where curly braces around indices indicate their symmetrization. Hence,

1qµ = 1ξµ + 1

2!
0νλ

µ1ξν1ξλ − 1

3!
(∂κ0νλ

µ − 20{κδ}µ0νλδ)1ξκ1ξν1ξλ + · · · (14)

and this may be inverted to

1ξµ = 1qµ − 1

2!
0νλ

µ1qν1qλ + 1

3!
(∂κ0νλ

µ + 0{κδ}µ0νλδ)1qκ1qν1qλ + · · · . (15)

Using this equation, we change the integration variables1q
µ
n in formula (7) into1ξµn , and

find the following measure for the path integral∫
dµq = lim

N→∞

[ ∏
n

dD1ξn
(2π ih̄1tn/m)D/2

√
g(qn)

]
exp

[
i

h̄1t

N+1∑
n=1

gµν(qn)1ξ
µ
n 1ξ

ν
n

]
. (16)

This expression is related to the flat-space measure (1) by just a linear transformation. The
reason for this is that in terms of the nonholonomicx-variables, the equation of motion (11)
is trivial: ẍi = 0. Henceẋi = constant, and

1xi = ẋi1t = eiµq̇
µ1t = eiµ1ξ

µ (17)

so that∂(1x)/∂(1ξ) = det‖eiµ‖ = √
g.

Using the simple measure (16), we immediately find for an amplitudeψt(q) the recursion
relation (again by removing the last slice from the product of integrals)

ψt(q) =
∫

dD1ξ

(2π ih̄1t/M)D/2
√
g exp

(
− M

2 ih̄1t
gµν1ξ

µ1ξν
)
ψt−1t (q −1q(1ξ)). (18)

Expanding the amplitude inside the integral in powers of1qµ, and expressing these in
terms of1ξµ with the help of (14), we find

ψt(q) =
∫

dD1ξ

(2π ih̄1t/M)D/2
√
g exp

(
− M

2 ih̄1t
gµν1ξ

µ1ξν
)[
ψt−1t (q)

−
(
1ξµ + 1

2
0νλ

µ1ξν1ξλ
)
∂µψt−1t (q)

+1

2
1ξµ1ξν∂µ∂νψt (q)+ O((1t)3/2)

]
= ψt(q)+1t

{
− ∂tψt (q)+ ih̄

2m
[gµν∂µ∂νψt (q)− 0κ

κµ∂µψt(q)]

}
+O((1t)2).

(19)

After making use of the identitygµν∂µ∂ν − 0κ
κµ∂µ = DµDµ, this is precisely the

Schr̈odinger equation (9).
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4. Comparison with the historic derivation of the Schr̈odinger equation in spaces
with curvature and torsion

To compare the present derivation with the historic derivation in [1–5, 7], we must calculate
1A as a function of1qµ up to fourth-order terms using formulae (12) and (15). This
yields

1A = m

21t

[
gµν1q

µ1qν − 0̄µνλ1q
µ1qν1qλ

+1

3

(
∂µ0̄νλκ − 1

4
0̄µνσ 0̄λκ

σ

)
1qµ1qν1qλ1qκ

+1

3
Sσ µνSσλκ1q

µ1qν1qλ1qκ + O((1q)5)
]
. (20)

The Jacobian∂(1x)/∂(1q) is conveniently given in the exponential form

∂(1x)/∂(1q) = √
g exp(i1A′

J /h̄) (21)

with an effective action

i

h̄
1A′

J = −0{µν}µ1qν + 1

2

[
∂{µ0λν}µ + 1

3

(
0{µκ}µ0{λν}κ − 0{λκ}µ0{νµ}κ

) ]
1qλ1qν

+O((1q)3). (22)

Inserting these expansions into the product of integrals (7) we obtain a large number of
terms. Upon applying formula (10), most of these cancel each other, leading again to the
Schr̈odinger equation (9).

The additional labour is the same as if we were to prove the obvious identity

[∂(1x)/∂(1q)][∂(1q)/∂(1ξ)] = ∂(1x)/∂(1ξ) = √
g (23)

by writing [∂(1x)/∂(1q)] as in (21) expanded via (22), and writing∂(1q)/∂(1ξ) =
exp(i1A′′

J /h̄) with

i

h̄
1A′′

J = 0{µν}µ1ξν − 1

2
(∂{µ0λν}µ − 20{{µκ}µ0λν}κ +0{µλ}κ0{κν}µ)1ξλ1ξν + O(1ξ3)(24)

which follows from (14). Inserting here (15) one may re-express the right-hand side as a
power series in1q, and form the sum1A′

J +1A′′
J . The many terms in this sum all cancel

each other, as required by (23).
All such complications are avoided by working with the variables1ξµ in which the

exponential in (19) is a pure Gaussian.
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Note added in proof. After this paper was accepted, Professor J S Dowker drew our attention to an early work of
his in 1974J. Phys. A: Math. Gen.7 1256, in which he simplifies the derivation of the Schrödinger equation in
a way similar to ours. His mapping, however, is different and produces undesirableR-terms as in previous works
[1–4].
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